Reduced phase stability and faster formation/dissociation kinetics in confined methane hydrate
نویسندگان
چکیده
منابع مشابه
Evolution of Phase Transitions in Methane Hydrate
We consider a simplified model of methane hydrates which we cast as a nonlinear evolution problem. For its well-posedness we extend the existing theory to cover the case in which the problem involves a measurable family of graphs. We represent the nonlinearity as a subgradient and prove a useful comparison principle, thus optimal regularity results follow. For the numerical solution we apply a ...
متن کاملA Fugacity Approach for Prediction of Phase Equilibria of Methane Clathrate Hydrate in Structure H
In this communication, a thermodynamic model is presented to predict the dissociation conditions of structure H (sH) clathrate hydrates with methane as help gas. This approach is an extension of the Klauda and Sandler fugacity model (2000) for prediction of phase boundaries of sI and sII clathrate hydrates. The phase behavior of the water and hydrocarbon system is modeled using the Peng-Robinso...
متن کاملIlluminating solid gas storage in confined spaces - methane hydrate formation in porous model carbons.
Methane hydrate nucleation and growth in porous model carbon materials illuminates the way towards the design of an optimized solid-based methane storage technology. High-pressure methane adsorption studies on pre-humidified carbons with well-defined and uniform porosity show that methane hydrate formation in confined nanospace can take place at relatively low pressures, even below 3 MPa CH4, d...
متن کاملDetection and Production of Methane Hydrate
We develop a relationship between the sulfate-methane transition (SMT) and average gas hydrate saturation (AGHS) for systems dominated by methane migration from deeper sources. The relationship is explained by a onedimensional numerical model that simulates gas hydrate accumulation in marine sediments. Higher methane fluxes result in shallow SMT depths and high AGHS, while lower methane fluxes ...
متن کاملSeeding Hydrate Formation in Water-saturated Sand with Dissolved-phase Methane Obtained from Hydrate Dissolution: a Progress Report
An isobaric flow loop added to the Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI) is being investigated as a means of rapidly forming methane hydrate in watersaturated sand from methane dissolved in water. Water circulates through a relatively warm source chamber, dissolving granular methane hydrate that was pre-made from seed ice, then enters a colder hydrate growth chamber wher...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 2021
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.2024025118